AG百家乐大转轮-AG百家乐导航_怎么看百家乐走势_全讯网官网 (中国)·官方网站

Research News

Prof. Jun Cui’s team from School of Life Sciences and Prof. Chun-Wei Li’s team from First Affiliated Hospital jointly reveal a novel mechanism for environmental organic pollutants-mediated cellular inflammation and tissue damage

Share
  • Updated: May 30, 2021
  • Written:
  • Edited:
Source: School of Life Sciences
Edited by: Tan Rongyu, Wang Dongmei

Perfluoroalkyl substances (PFAS) are widely used in industrial manufacturing processes and consumer products due to their joint hydrophobic and oleophobic properties. These compounds are detected in many routinely used items during our daily life, such as coats, papers, food contact materials, cleansers, paints, etc. PFAS are hard to be degraded under natural environmental conditions and can also be detected in the environment, plants and wildlife. Human populations are exposed to PFAS via ingestion of drinking water and food, inhalation of air and dust, and contact with contaminated media. Emerging evidence suggested an accumulation of PFAS in the human body is associated with adverse health effects, including immune-related health conditions (like allergic diseases), metabolic dysregulation (like nonalcoholic fatty liver disease), and neurodevelopmental delays. Among the various PFAS, perfluorooctane sulfonate (PFOS) is the most common type studied in relation to human health and was added to the Stockholm Convention’s list of globally restricted Persistent Organic Pollutants in 2009 under United Nation Environment Programme.

Several studies have indicated that oxidative and inflammatory responses are involved in PFOS-induced cell injury and tissue damage. However, most experimental results about PFOS are based on descriptive studies and the mechanisms underlying PFAS-induced tissue inflammation remain poorly understood. One critical question is how PFOS is recognized in the cells and trigger cellular inflammatory responses.

In this study, researchers revealed both the acute and chronic PFOS exposure induce inflammatory cytokine production (IL-1β, TNF-α and IL-6) and tissue injury. Mechanistically, researchers found that the level of cytosolic Ca2+ was obviously up-regulated in PFOS- treated cells. And the increase of cytosolic free Ca2+ contributes to the activation of downstream kinases (protein kinase C), leading to the activation of NF-κB signaling or JNK signaling. The phosphorylated JNK can promote BAX translocation to mitochondrial, leading to the interaction between BAX and CypD or BAK. BAX/BAK- and BAX/CypD-mediated pathway contributes to PFOS-triggered the mtDNA release, resulting in AIM2 inflammasome activation. They established PFOS acute exposure mouse model and PFOS-induced asthmatic exacerbation mouse model, then found that PFOS-induced tissue damage (liver, lung and kidney) and the inflammatory patterns under PFOS+OVA treatment were markedly reduced in Aim2-/- mice, indicating that AIM2 inflammasome activation contributes to PFOS-induced tissue inflammation and asthmatic exacerbation.


Fig. 1 Schematic diagram to illustrate the mechanisms that PFOS exposure induces AIM2 inflammasome activation to promote tissue damage through the Ca2+-PKC-NF-κB/JNK-BAX/BAK-mtDNA axis.

    Collectively, the researchers found that PFOS activates the AIM2 inflammasome in a process involving non-oxidized mitochondrial DNA release through the Ca2+-PKC-NF-κB/JNK-BAX/BAK axis (Fig. 1). This research suggests a link between environmental organic pollutants (e.g., PFOS), intracellular danger signals (mtDNA) and sensor (AIM2 inflammasome) to the host effect (cellular inflammation and tissue damage), which is the essential mechanism triggering the PFOS-associated inflammatory diseases.

    This work entitled "Perfluoroalkyl substance pollutants activate the innate immune system through the AIM2 inflammasome" was published online in the international prestigious journal Nature Communications on May 18th, 2021. Prof. Jun Cui and Prof. Chun-Wei Li are the corresponding authors. Dr. Li-Qiu Wang is the first author. This research is supported by the National Natural Science Foundation of China.

    Link to the paper: https://www.nature.com/articles/s41467-021-23201-0
TOP
百家乐赢家公式| 百家乐官网博赌城| 网上百家乐真的假| 顶级赌场是骗人的吗| 皇冠在线娱乐| 太子百家乐官网娱乐城| 大发8888| 百家乐官网系统分析器| 玩百家乐官网如何硬| 百家乐官网楼梯缆| 百家乐出庄的概率| 百家乐官网神仙道官网| 百家乐娱乐城代理| 百家乐官网色子玩法| 百家乐公式软件| 百家乐官网视频双扣| 皇马百家乐官网的玩法技巧和规则 | 宝都棋牌下载| 24山向吉凶| 百家乐投注很好| 凤翔县| 大发百家乐现金| 将乐县| 百家乐打线| 百家乐官网麻关于博彩投注| 精通百家乐的玩法技巧和规则| 百家乐官网赌场信息| 聚宝盆百家乐官网游戏| 百家乐街机游戏下载| 黄金城百家乐官网游戏| 百家乐77scs官| 免费百家乐官网过滤| 孝昌县| 百家乐透明发牌机| 凯斯百家乐的玩法技巧和规则| 百家乐代理每周返佣| 百家乐官网大光明影院| 爱赢娱乐城| 百家乐官网群详解包杀| 网上百家乐官网投注法| 威尼斯人娱乐城是波音|