AG百家乐大转轮-AG百家乐导航_怎么看百家乐走势_全讯网官网 (中国)·官方网站

Research News

Prof. Jun Cui’s team from School of Life Sciences and Prof. Chun-Wei Li’s team from First Affiliated Hospital jointly reveal a novel mechanism for environmental organic pollutants-mediated cellular inflammation and tissue damage

Share
  • Updated: May 30, 2021
  • Written:
  • Edited:
Source: School of Life Sciences
Edited by: Tan Rongyu, Wang Dongmei

Perfluoroalkyl substances (PFAS) are widely used in industrial manufacturing processes and consumer products due to their joint hydrophobic and oleophobic properties. These compounds are detected in many routinely used items during our daily life, such as coats, papers, food contact materials, cleansers, paints, etc. PFAS are hard to be degraded under natural environmental conditions and can also be detected in the environment, plants and wildlife. Human populations are exposed to PFAS via ingestion of drinking water and food, inhalation of air and dust, and contact with contaminated media. Emerging evidence suggested an accumulation of PFAS in the human body is associated with adverse health effects, including immune-related health conditions (like allergic diseases), metabolic dysregulation (like nonalcoholic fatty liver disease), and neurodevelopmental delays. Among the various PFAS, perfluorooctane sulfonate (PFOS) is the most common type studied in relation to human health and was added to the Stockholm Convention’s list of globally restricted Persistent Organic Pollutants in 2009 under United Nation Environment Programme.

Several studies have indicated that oxidative and inflammatory responses are involved in PFOS-induced cell injury and tissue damage. However, most experimental results about PFOS are based on descriptive studies and the mechanisms underlying PFAS-induced tissue inflammation remain poorly understood. One critical question is how PFOS is recognized in the cells and trigger cellular inflammatory responses.

In this study, researchers revealed both the acute and chronic PFOS exposure induce inflammatory cytokine production (IL-1β, TNF-α and IL-6) and tissue injury. Mechanistically, researchers found that the level of cytosolic Ca2+ was obviously up-regulated in PFOS- treated cells. And the increase of cytosolic free Ca2+ contributes to the activation of downstream kinases (protein kinase C), leading to the activation of NF-κB signaling or JNK signaling. The phosphorylated JNK can promote BAX translocation to mitochondrial, leading to the interaction between BAX and CypD or BAK. BAX/BAK- and BAX/CypD-mediated pathway contributes to PFOS-triggered the mtDNA release, resulting in AIM2 inflammasome activation. They established PFOS acute exposure mouse model and PFOS-induced asthmatic exacerbation mouse model, then found that PFOS-induced tissue damage (liver, lung and kidney) and the inflammatory patterns under PFOS+OVA treatment were markedly reduced in Aim2-/- mice, indicating that AIM2 inflammasome activation contributes to PFOS-induced tissue inflammation and asthmatic exacerbation.


Fig. 1 Schematic diagram to illustrate the mechanisms that PFOS exposure induces AIM2 inflammasome activation to promote tissue damage through the Ca2+-PKC-NF-κB/JNK-BAX/BAK-mtDNA axis.

    Collectively, the researchers found that PFOS activates the AIM2 inflammasome in a process involving non-oxidized mitochondrial DNA release through the Ca2+-PKC-NF-κB/JNK-BAX/BAK axis (Fig. 1). This research suggests a link between environmental organic pollutants (e.g., PFOS), intracellular danger signals (mtDNA) and sensor (AIM2 inflammasome) to the host effect (cellular inflammation and tissue damage), which is the essential mechanism triggering the PFOS-associated inflammatory diseases.

    This work entitled "Perfluoroalkyl substance pollutants activate the innate immune system through the AIM2 inflammasome" was published online in the international prestigious journal Nature Communications on May 18th, 2021. Prof. Jun Cui and Prof. Chun-Wei Li are the corresponding authors. Dr. Li-Qiu Wang is the first author. This research is supported by the National Natural Science Foundation of China.

    Link to the paper: https://www.nature.com/articles/s41467-021-23201-0
TOP
竞彩足球| 澳门太阳城娱乐城| 真人百家乐官网送钱| 百家乐游戏客户端| bet365提款要多久| 网上百家乐官网好玩吗| 百家乐水晶筹码| 甘孜县| 百家乐赌神| 优博百家乐官网现金网| 澳门百家乐战法| 陵川县| 美女百家乐的玩法技巧和规则 | 线上百家乐官网赢钱| 二八杠怎么玩| 网络百家乐官网现金游戏哪里的信誉好啊| 大发888娱乐场168| 优惠搏百家乐官网的玩法技巧和规则 | 大发888信誉平台| 鼠和猴做生意招财| 沙龙百家乐官网破解| 百家乐返点| 四方百家乐的玩法技巧和规则| 百家乐官网大小技巧| 百家乐那里可以玩| 澳门百家乐现场真人版| 玩百家乐官网澳门368娱乐城| 全讯网433234| 新锦江百家乐官网娱乐场| bet365虚拟运动| 大发888娱乐场下载安装| 百家乐真钱路怎么看| 保单百家乐官网游戏机| 威尼斯人娱乐城赌博| 百家乐连输的时候| 百家乐官网系统足球博彩通| 全讯网qtqnet| 做生意佩戴什么纳财| 澳门百家乐官网娱乐城送彩金| 老k棋牌游戏大厅| 威尼斯人娱乐城赌博网|