AG百家乐大转轮-AG百家乐导航_怎么看百家乐走势_全讯网官网 (中国)·官方网站

Research News

Prof. Haotian Lin’s team and Dr. Yuesi Zhong’s team cooperate to engineer the world's first artificial intelligence-based technology for screening and identifying hepatobiliary diseases through ocular imaging

Share
  • Updated: Jan 29, 2021
  • Written:
  • Edited:
Source: Zhongshan Ophthalmic Center
Edited by: Tan Rongyu, Wang Dongmei

Achieving universal health requires breakthroughs in medical technologies and health management models. Among the numerous organs of the human body, the eye is the only body surface organ that can directly observe important structures such as arteries and nerves. Lesions of different systems could have characteristic manifestations in the eye, and AI diagnostic technologies based on ocular imaging will become the new ‘core’ of innovation medical treatment. Traditional medicine has showed that icteric changes in the conjunctiva and sclera have been observed in hepatobiliary diseases. However, these changes are limited in some disease categories, and other ocular manifestations associated with different hepatobiliary diseases are poorly understood. Additionally, these manifestations are neither specific nor substantial, further limiting their use as stand-alone diagnostic features.

Supported by the medical artificial intelligence innovation platform of Sun Yat-sen University, an international multicenter research program led by Haotian Lin (Zhongshan Ophthalmic Center)and Yuesi Zhong (the Third Affiliated Hospital, Sun Yat-sen University), was the first to develop a technique for screening and identifying hepatobiliary diseases through ocular imaging, which has been published in the top international journal The Lancet Digital Health on January 26, 2021.

The research team successfully extracted the ocular features of hepatobiliary diseases from these imaging data via deep learning using slit-lamp and fundus images, and developed and tested 14 models (seven slit-lamp models and seven fundus models). The models can be used to screen for hepatobiliary diseases and identifying six categories of hepatobiliary diseases, including liver cancer, liver cirrhosis, chronic viral hepatitis, non-alcoholic fatty liver, cholelithiasis and liver cyst. The models achieved good performance in the diagnosis of severe liver diseases such as liver cancer and liver cirrhosis and relatively poor performance in milder disease such as chronic viral hepatitis, non-alcoholic fatty liver, cholelithiasis and liver cyst. These models have been successfully deployed on the intelligent diagnosis prediction cloud platform of Zhongshan Ophthalmic Center, Sun Yat-sen University, which could be applied as a big scale opportunistic screening tool.



Figure 1. Using ocular imaging to screen and identify hepatobiliary diseases via deep learning



Figure 2. Interface of Hepatobiliary Disease Screening System of Intelligent Diagnosis and Prediction Platform of Zhongshan Ophthalmology Center, Sun Yat-sen University
?

To understand the mechanism of our models and minimize the black-box effect, the research team adopted several visualization techniques to highlight the abnormal areas recognized by the algorithms and did occlusion test and greying test. The test showed that in addition to the conjunctiva and sclera, the deep learning model revealed that the structures of the iris and fundus also contributed to the classification.


Figure 3. Heatmaps

This research work has been highly praised by domestic and foreign peers. The director of the internal medicine department and hepatobiliary chief expert Professor Vijay H Shah, from the well-known medical institutions (Mayo Clinic), made a comment and praised "This is the first study to propose an entirely new role for ophthalmological imaging to serve as a screening tool for early detection of hepatobiliary disorders ".

Prof. Haotian Lin (Zhongshan Ophthalmic Center) and Dr. Yuesi Zhong (the Third Affiliated Hospital, Sun Yat-sen University) are the corresponding authors. Wei Xiao (Zhongshan Ophthalmic Center), Xi Huang(the Third Affiliated Hospital, Sun Yat-sen University)and Jinghui Wang(Zhongshan Ophthalmic Center)are the co-first authors. Prof. Weirong Chen (Zhongshan Ophthalmic Center) and Prof. Yizhi Liu(Zhongshan Ophthalmic Center)are the co-senior authors. Prof. Zhiyong Guo (Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University), Wen Wen (National Centre for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University), Carol Yim-Lui Cheung (Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong), Ji-Peng Olivia Li (Moorfields Eye Hospital NHS Foundation Trust) and Yoshihiro Mise (Department of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research) made significant contributions to this work. This research was funded by the Science and Technology Planning Projects of Guangdong Province (2018B010109008), the National Key R&D Program of China (2018YFC0116500), the Guangzhou Key Laboratory Project (202002010006).

Link (article): http://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30288-0/fulltext

Link (comment): http://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30319-8/fulltext

TOP
百家乐起步多少| 百家乐筹码桌| 大发888娱乐城xiazai| 百家乐两边| 百家乐发牌靴8| 威尼斯人娱乐场内幕| 太阳城巧克力社区怎么样| 壹贰博娱乐城| 摩纳哥百家乐官网娱乐城| 娱乐城大全| 大发888注册送58元| 德州扑克 盲注| 百家乐官网3带厂家地址| 金域百家乐官网的玩法技巧和规则 | 波音娱乐城送彩金| 百家乐官网U盘下载| 百家乐官网tie| 环球百家乐现金网| 如何玩百家乐赢钱技巧| 郁南县| 百家乐官网操作技巧| 百家乐看盘技巧| 足球开户网| 做生意摆放什么会招财| 棋牌英雄传| 百家乐官网美国玩法| 百家乐几点不用补| 百家乐官网天下第一和| 赌博千术| 博坊百家乐游戏| 易发娱乐场| 百家乐官网电影网| 百家乐官网庄闲下载| 百家乐之三姐妹赌博机| 太阳城百家乐官网看牌| 百家乐游戏大小| 百家乐官网开过的路纸| 华宁县| 百家乐园云鼎赌场娱乐网规则| 百家乐官网总厂在哪里| 百家乐龙虎台布价格|